
UNIVERSITY OF NEBRASKA-LINCOLN Department of Electrical and Computer Engineering

ECEN-370	Digital L	ogic Design	Fall, 2018
Instructor: Office: Telephone: Email:	Dr. Hamid Vakilzadian 241 N WSEC Voice: (402) 472-1977 <u>hvakilzadian@unl.edu</u>		
TA: Email:	M K Gharzai mkgharzai@gmail.com		

Time & Place: 10:30 - 11:20 AM MWF, Othmer 105 **Office Hours:** 11:30 - 12:30 PM, MWF and by appointment

Textbook: Fundamentals of Digital Logic with VHDL Design, Third Edition by Stephen Brown and Zvonko Vranesic, McGraw Hill

Lab Kit: Intel/Altera Terasic DE10- Lite

PrerequisiteELEC 122 or CSCE 230Cross-listedCSCE 335

Goal:	 Combine logic gates into a functional representation Know implementation technology using PMOS, NMOS, and CMOS circuits Minimize single and multiple output combinational logic circuits Design combinational circuits using medium scale integrated (MSI) components. Analyze and design synchronous sequential circuits Be familiar with designs using FPGAs Be familiar with using a hardware description language 	
Prerequisite	 Demonstrate working familiarity with binary numbers and number systems including sign-magnitude, one's complement, and two's complement; (Review section 1.6, pp. 18-20 of the text) Know the function of logic gates and combine them into a functional representation (e.g., minterms, maxterms, and truth tables), Chapter #2, Sections 2.1- 2.4, PP. 22- 31; Simplify Boolean expressions using Karnaugh maps and implement them using 2-level all NAND and 2-level all NOR gates; Chapter #2, Sections 2.7-pp.47-51 and Chapter #4, Sections 4.1, PP. 168-175 Know registers and counters, Chapter #7, Sections 7.8-7.9; pp. 401- 411 	
Course		
Contents:	 hapter 2: Introduction to Logic Circuits (Sections 2.5, 2.8) hapter 3: Implementation Technology (Sections 3.1-3.10) hapter 4: Optimization of Boolean functions (Sections 4.2-4.7, 4.9) Quine-McCluskey's method for single and multi-output functions hapter 5: Representation of Real Numbers and Arithmetic Circuits (Sections 5.2-5.4, 5.7) hapter 6: Combinational-Circuit Building Blocks (Sections 6.1-6.6) hapter 7: Flip-Flops, Registers, Counters (7.1-7.8, 7.11, 7.15) hapter 8: Synchronous Sequential Circuits (8.1- 8.12) hapter 9: Asynchronous Sequential Circuits (if time permits) (Sections 9.1- 9.7) 	