
An Integrated FPGA, PCB, Verification,
Software, and Testing Design Flow

ABSTRACT
This paper describes an integrated design environment that
connects FPGA designs with the hardware PCB design flow,
allows for software co-simulation, enables simulation of multi-
board systems, and helps with the lab testing and integra-
tion of the overall system. By using this flow, a 32-layer
PCB with 11 large FPGAs that took nine months from con-
cept to gerbers, was integrated into the rest of the system
less than one week after it arrived from the board manufac-
turer. The one barnacle was due to an error in a datasheet
that was found after the board was built.

Categories and Subject Descriptors
M2.1 [Design Methodology and Case Study]: Overall
design flow

General Terms
Design flow, methodology

Keywords
FPGA design flow, PCB design flow, system integration

1. INTRODUCTION
The design of a large network switching system requires

the implementation of many complex interacting printed cir-
cuit boards (PCBs). Each PCB will have commercial and
proprietary devices that are typically ASICs or FPGAs.
There is also typically a control processor that communi-
cates with each of the devices on the card. Building such
a system involves a number of different design flows that
can be roughly divided into the PCB, ASIC/FPGA, and
the software design flows. Each of these flows are complex
in their own right and they will have their own integrity,
verification, and design rule checks.

Many of the integration problems will occur at the bound-
aries of these flows. An obvious example is that often the
first time the software compatibility with the hardware can
be tested is when the real hardware arrives. Problems will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’04 San Diego, California USA
Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Schematics
RTL

Top−level

Spreadsheet
Pin−List

Chip RTL
Behavioural

Model

System−level
Simulation

PCB Layout

FPGA
Bitstream

Validation ScriptsLab

FPGA Constraint Files
BSDL Files

Verification

Software
Drivers

Co−simulation

Figure 1: The overall design flow.

also occur at the ASIC/FPGA and PCB boundary. A simple
example occurs when the pin assignments are not consistent
between the chip design and the PCB design.

Another problem area is checking the connectivity of the
components on a PCB and the overall functionality of the
system. In our case, we had boards with over ten large
FPGAs plus other off-the-shelf components. With the large
number of interacting parts, it was desirable to be able to
test the system-level functional interaction of the FPGAs
being developed along with the third party components.

In this paper, we describe the design flow that was de-
veloped at XYZ Networks, an optical networking startup
company, that integrated our FPGA, PCB, and software
driver designs. Figure 1 shows an overview of the flow.

There were three goals: To achieve first-time success for
each PCB design; To provide a co-simulation flow for the
software team to debug their drivers for the FPGAs; To
provide a means to generate scripts for the initial board
testing and system integration.

Some of the important glue that ties the overall flow to-
gether is the naming convention described in Section 2. The
root of the design flow centres around the FPGA flow, which
is discussed in Section 3. The links to the PCB design flow
are described in Section 4. Section 5 outlines how schematic
checking was done and the simulation environment is de-
scribed in Section 6. Connecting the design environment
to the lab testing is explained in Section 7 and results and
conclusions are given the final two sections.

2. NAMING CONVENTION
The use of common names for all signals in all flows was

how linkages between the various flows were implemented.

Schematic top level

BUSX_P[31:0]

BUSX_N[31:0]

SIGY_PN[1:0]

SIGT

CHA_CHB_BUSX_P[31:0]

CHA_CHB_BUSX_N[31:0]

CHA_CHB_SIGY_PN[1:0]

BUSX_P[31:0]

BUSX_N[31:0]

SIGY_PN[1:0]

SIGT

CHACHB_SIGT

CLK_FBO

CLK_FBI
CHA_CLK_FBO

CHACHB_SIGT_T

SIGZ_B

CHBBDA_SIGZ_BChip level for Chip CHA Chip level for Chip CHB

Figure 2: Two-level signal naming convention.

For example, source and destination names were used in con-
nectivity checking. Differential signal naming was used for
pin placement and DRC rule checking. The names also gave
some indication about the properties of the signal. The main
requirements and features of the convention are highlighted
here.

Two levels of naming were used. One level was a chip-level
name and the other was the schematic top-level name. The
chip-level names applied to the chip-level schematic and the
FPGA ports. The top-level names were used for the chip-
to-chip connections and incorporated the chip-level name as
well as being prepended by additional information. The two-
level hierarchy was sufficient to allow for multiple instances
of the same device.

The key requirements of the naming convention included
an indication of the source and destination, dealing with ac-
tive low signals, names for differential pairs, names for active
low differential pairs, handling signals that go to connectors
and backplanes, handling loop-back signal names such as a
clock feedback, allowing for different instances of the same
device to talk to each other, a prefix to indicate the sig-
nals that are part of the same group such as a bus, not us-
ing an in/out direction reference, handling bidirectional sig-
nals/buses, showing source termination, and handling stubs
and buffers. The electrical signal type, such as HSTL or
SSTL, were not included to keep the names short and to
avoid having to change the name if the pad type changed.

Figure 2 shows the basic scheme. A number of signals
originating in chip CHA and received at chip CHB are shown
as examples of signals using the convention. The top two
signals represent a differential bus named BUSX where the
P and N represent the positive and negative senses of the
signal. The signal SIGY is a single differential pair where
PN[1] is the positive sense and PN[0] is the negative sense.
The series-terminated signal SIGT shows how T is appended
to the part of the net that drives the termination. The
naming of a clock feedback signal is shown for chip CHA,
where FBO is the output and FBI is the input. At the top
level, an arbitrary decision was made to use FBO to indicate
the feedback nature of the signal. On chip CHB the signal
SIGZ B is a bidirectional signal that goes from chip CHB to
the connector for signals going to the board called BDA.

3. THE FPGA FLOW
The basic FPGA design flow was not much different from

what would be used in many environments. The HDL used
was Verilog, revision control was done using CVS, PERL
was used for scripting, makefiles were used to run the var-
ious commands, and VERA from Synopsys [1] was used as
the testbench language. All test cases were regressionable
and self-checking so that they could be launched in batch
mode. Synplicity [2] was used for synthesis and our target
technology was Xilinx [3] Virtex-II FPGAs. The simulator
we used was Synopsys VCS [1] and load balancing of our
simulations was done using LSF [4].

3.1 The Pin-List Spreadsheet
The root of the overall flow was the use of an Excel [5]

spreadsheet to capture all of the top-level information about
the specific FPGA being developed. This pin-list spread-
sheet template was originally created because we were de-
veloping a large number of FPGAs and there was a desire
to automate many of the tasks having to do with specifying
the functions of the various pins on each FPGA. Eventually,
this spreadsheet evolved to be the key to linking all of the
other design flows together.

The pin-list spreadsheet captured the following informa-
tion:

• signal name, determined by the naming convention dis-
cussed in Section 2;

• the source signal and/or destination signal. If a signal
had a multiple fanout, all destinations were specified,
and for devices on that net only the source name was
used, and no destination was specified;

• I/O direction, signaling standard (HSTL, LVDS, etc.)
to be configured for that pin, reference voltages;

• clocking domain for the signal, especially for I/Os that
used flip flops in the I/O pads;

• termination type if the internal Xilinx I/O termina-
tions were used;

• FPGA bank. Xilinx I/Os are partitioned into eight
different banks with rules about I/O types allowed in
each bank;

• package information, as in type, number of pins;
• pin (actually ball) number for pins that had to be

locked to a specific pin. Pins that could float within
the bank were given an initial assignment during sym-
bol generation.

A number of scripts were developed to process the infor-
mation captured in the pin-list spreadsheet. These scripts
could generate other representations of the data, do design
rule checks, and generate the initial pin placements.

The first processing step was to convert the spreadsheet
into a csv (comma-separated values) file so that it could
be processed by various PERL scripts. For the RTL and
verification designers, a script was used to generate the top-
level Verilog module with the appropriate ports declared
from the pin-list csv file. This module could then be easily
regenerated as the pin definitions changed.

There were also a number of design-rule checks to en-
sure that various Xilinx rules were not violated. Some were
scripts and some were built into the spreadsheet. These in-
cluded checks for the number of pins per bank, compatibility
of I/O standards to the voltage references in a bank, valid
clocking of I/O flip flops, and cross-checking the consistency
of the data in the spreadsheet.

The pin-list spreadsheet was not used just for the FPGAs
developed. A simplified version was also used for all other

symbols. This was the best way to maintain the consistency
of the naming convention in the schematic symbols by just
generating the symbols from a single database. However,
when using third party devices, the spreadsheet had to use
the names from the behavioural model provided by the ven-
dor to make sure that the signals could be found when doing
the simulations.

The pin-list spreadsheet was also important for linking
the FPGA flow to the PCB flow.

4. LINKS TO THE PCB FLOW
The PCB design was done using the Cadence [6] Concept

HDL suite of tools for schematic entry and Cadence Allegro

for layout. There were two main links from the FPGA flow
to the PCB flow: symbol generation and PCB layout re-
porting. The symbol generation was the link into the PCB
flow and the PCB layout reporting was a back annotation
process that also included some consistency checking. The
most important information to make consistent between the
two flows was the information relating to the pins, such as
the physical pin assignments and the characteristics of the
pins.

4.1 Pin Specifications
The allocation of the signals to each of the banks in the

FPGA was the responsibility of the FPGA designers. The
decisions were made based on the internal floorplan of the
chip, the floorplan of the PCB, and the allowable I/O stan-
dards based on the voltage references used in each bank.
The FPGA designer could also lock signals to specific pins
when necessary.

We also used the property that moving pins within a bank
of pins would not significantly affect the timing character-
istics of the FPGA. This gave some flexibility during PCB
layout to move pins or flip buses within a bank if this would
make the layout easier. Allowing and using this flexibility
worked quite well. This meant that the final pin assign-
ments would have to be extracted from the layout report
files and merged back into the pin-list spreadsheet in case
new symbols had to be generated due to a change. This back
annotation process for the pins was part of the connection
of the PCB layout flow back to the FPGA flow.

4.2 Symbol Generation
The flexibility and complexity of the FPGA designs re-

quired quite a number of symbols to be created for the
schematic entry. The FPGAs we used were mostly in an
1152-pin BGA package so there were a large number of pins
to track. It was important to automate this process to mini-
mize the chance of introducing errors in the symbol creation.

The FPGA symbols were created in a two-level hierar-
chy. The top-level symbol captured the names of all of the
signals without any of the physical attributes, such as pin
numbers. The second level of symbols were partitioned ac-
cording to the allocation of pins to the eight different banks
as implemented on the FPGA by Xilinx. These were called
the bank symbols. An important benefit of this hierarchy
was that the remainder of the schematics could first proceed
using only the top-level symbol before the final allocations
of the signals to the various banks was done. This enabled
an overlap that could save several weeks in the overall design
time.

Figure 3 shows an overview of the symbol generation flow.

chip_top.csv

chip_banks.csv

Pin−list
Spreadsheet

Part
Developer Concept HDL

CSV
Back
Annotate

Checker EDIF

Generate
Symbol

Extract
Symbols

Figure 3: Automatic symbol generation flow.

By using a script, symbol information was extracted from
the csv file of the pin-list spreadsheet. Two new csv files were
created, one for the top-level symbol, called chip top.csv,
and the other to define the banks, called chip banks.csv.
These csv files were then converted via a script into the
symbol files that could be imported into Cadence Part De-

veloper, and then made available for use in the schematics.

4.3 PCB Layout Checking
After the PCB layout was complete a number of checks

were done to ensure that no FPGA design rules had been
violated and that the design requirements had been properly
implemented.

The PCB layout information was extracted in the form
of an EDIF netlist of the board. A number of scripts were
used to process the EDIF netlist. They are represented by
the Checker in Figure 3.

The main reason the Checker was required was to check
the correctness of the pins after the swapping that was done
during the PCB layout. The tasks of the Checker included:

• check that all the I/O types on a particular bank had
compatible voltages for the output drivers, the input
voltage references and the clamping voltages;

• check that all the signals in the pin-list spreadsheet
were assigned to an I/O in the schematic symbols;

• check that all symbol pins were assigned to a valid I/O;

• check that all signals were paired with a compatible
signal in terms of clocking and pin assignments. This
addressed a Xilinx design requirement related to how
clocks were distributed in the I/Os;

• check that all pins that were locked in the pin-list
spreadsheet were not moved in the layout.

In addition to the design rule checks performed on the
PCB layout, the pin locations used in the layout needed to
be recorded and used to generate the pin assignment con-
straint file (UCF) for the Xilinx place and route tool.

4.4 PCB Layout Backannotation
The pin location back annotations were also done starting

with the EDIF netlist extracted from the PCB layout. This
file was converted into a csv file, called backannotated.csv.
The new pin locations in the backannotated.csv file were then
merged back into the chip banks.csv file.

Note that the pin locations were not merged back into the
original pin-list spreadsheet. Once the initial chip banks.csv

file was created, it became the central database for the pin

locations. If new pins were added into the pin-list spread-
sheet, then a forward annotation was done to update the
chip banks.csv file.

4.5 BSDL Files for JTAG Testing
Once the final pin locations were determined and backan-

notated, all of the pin information was available to create
the BSDL files needed for JTAG testing of the boards. A
script was used to generate all of the BSDL files from the
database, again without any worry about having inconsis-
tent or incorrect data about the pins.

4.6 Further Pin Assignment Checking
To add another level of confidence in the FPGA pin-

assignment process, a trial place and route of the FPGA
was done as soon as enough RTL was available. This would
make sure that the documentation of the pin-assignment
rules corresponded to the rules implemented in the place
and route tool. Passing the place and route using the gen-
erated chip.ucf file was a key goal before the PCB was sent
for fabrication.

5. CONNECTIVITY CHECKING
In any PCB design flow, an important step after the design

entry is to check that all of the connections are correct and
that other miscellaneous components are correctly specified
and connected such as termination resistors. When any of
the components are designed in-house, such as the FPGAs,
then it is best that the FPGA designers actually check the
schematics to ensure that their FPGA has been correctly
connected with respect to the signals, the power supplies,
and the terminations required for the specified FPGA I/Os.
The PCB designers must review the connections of all of the
other components.

Schematic checking by hand is extremely tedious, time-
consuming, and error-prone. We developed a Connectivity

Checker, called CAD, written in C++ that would produce
reports to make it much easier for inspecting the schematic.
The input to CAD included the Verilog netlist extracted
from the schematic, an extraction list, where users specified
the modules that were to be extracted from the schematic
and the expected pin lists of the modules. For example, to
extract all of the FPGAs on a PCB, the names of all of the
FPGAs would be included in the list.

CAD built the entire circuit in its database using a cir-
cuit synthesizer engine. Once the circuit was synthesized
from the netlist, an initial electrical value was propagated
to all the nets from the power and ground pins. CAD then
generated several output files.

An extracted Verilog netlist for both component-level and
system-level simulation was created. The original netlist
could not be simulated so CAD would remove components
or modify them, as well as remove the components that were
not in the extraction list. Pull-ups and pull-downs that were
in the schematic were replaced with a pull-up and pull-down
module that could be simulated. Capacitors and resistors
were replaced with modules that could be simulated. Power
and ground pins and all their electrically equivalent nets
were replaced by 1’b1 and 1’b0, respectively.

The module list was used to compare the extracted pins
with the pins in the spreadsheets. For example, for a chip
called mpp, the mpp top file that was generated from the
spreadsheet was compared to the mpp top file from the sche-

Pin/Bus Name : ad_data (OUTPUT)

ad_data[3] INOUT OTHER bms_banks ad_data3

WIRE OTHER t bmsdpc_ad_data[3]
INPUT CHIP dpc_top (1) ad_data[3]
INOUT OTHER dpc_banks ad_data3
INOUT R-H-0v75 rpac4 a[0]

...............
R-H-0v75 1

Figure 4: Example of the connections for one pin

from a Connectivity Report.

matic. If there were differences between the spreadsheets
and the schematics, CAD would generate an error report and
indicate the missing or mismatched pins in the schematic.

Some of the most important outputs from CAD were the
reports that were generated to facilitate schematic checking.
A report was generated for each module on the extraction
list. There were different levels of the report. One would just
show the start and end point of a net and the type of pull-
up, if any. Another would show a more detailed description
of the path that it would take. This allowed the designer to
selectively turn on or off varying amounts of detail.

An example item from a schematic report is shown in
Figure 4. The example design report shows the path of
the net ad data[3] on the schematic and its endpoint. The
first symbol that the net appears on is called bms banks,
and it is called ad data3 on that symbol. The next place
that we see the signal is at the top level and it is called
bmsdpc ad data[3]. It then goes into the dpc top and the
dpc banks symbols. This path indicates that the signal goes
from the bms chip to the dpc chip. Also, it is showing that
it branches off to resistor pack rpac4. Below the path, is
the indication R-H-0v75, which shows that the signal has a
pull-up resistor tied to 0.75v on it.

In addition to tracing the path, there are two other columns
of information. The second column shows the Verilog port
type declaration from the extracted netlist and the third
column indicates whether the signal was found on a chip-
level view of the schematic, whether it is a resistor module
or some other view.

The report generated by CAD made it much easier to
trace the connection of each net on the schematic. The
designer did not have to go through multiple pages of the
schematic and try to follow possible name changes. The
FPGA designers were extremely happy with this report as
they could check the schematic with much greater accuracy
in only about an hour, instead of taking over a day of con-
centrated effort.

There were cases of errors found in the reports that the
board designers could not find on the schematic at first.
They were reading what they wanted, instead of what they
had done, such as crossing pairs of chip selects. A more
insidious problem was a stub of a power net shorting a data
line. The stub was not visible on the schematic.

Once the Connectivity Reports had been completely checked
for the first time, any further changes to the schematic could
be very quickly reviewed by simply generating a new set of
reports and using the Unix diff utility to check for file dif-

CHB
Behavioural

Model

CHA CHB CHC

Traffic
Generator

CheckerVERARTL

1
Tx

1
Rx

2
Tx

2
Rx

Figure 5: Example of the testbench environment.

ferences. Any changes in the schematic would be quickly
highlighted for checking.

6. SIMULATION
There were several levels of simulation done to verify dif-

ferent aspects of the design, ranging from checking an FPGA
by itself, co-simulation to allow software to do some check-
ing, and system-level simulation to check the functionality
of many interacting components.

Behavioural models of all of the FPGAs being designed
were built and the models for third party devices, such as
framers or memories, were also obtained.

All models could be automatically connected using netlists
generated from the schematics.

6.1 Testbench Environment
Figure 5 shows an example of our testbench environment

where chip CHB is being tested. The Tx and Rx VERA
blocks are bus functional models (BFMs).

Using the capabilities of the object-oriented programming
methodology, universal Tx and Rx BFM object classes were
created to reduce the effort of building the large number of
BFMs required. These universal BFMs were able to work
using any bus naming and width. An internal hash table
was used to load the pin-mapping table and the generic pin
names of the universal BFM were dynamically bound to the
actual pin names at run time.

Several different kinds of tests could be carried out, each
using the same netlist generated by CAD from the schemat-
ics. In the DUTLESS simulation mode, the netlist itself
could be tested before any RTL was completed using just
the VERA behavioural models as connected in Figure 5. In
this mode, Tx2 could also be configured to inject errors to
help debug the Checker prior to using the RTL. If the RTL
for CHB was to be tested, then Tx2 was removed and the
RTL for CHB was included. To test the interfaces of CHB

with the RTL for CHA and CHC then the RTL for those
chips would be included and Tx1 would not be required.

Using this environment, it was straightforward to test a
single device or to simulate a number of devices, which we
called system-level simulation.

6.2 System-Level Simulation
The system-level simulation could be used in many ways.

Given the board netlist and the behavioural models of all of
the components, it was possible to simulate the functionality
of the entire card. In fact, it was even possible to simulate
multiple interacting cards using our framework. The entire
line card could be simulated from the input to the framer
chip, through the input datapath, looped back at the switch

fabric interface to the output datapath and through the out-
put of the framer. With behavioural models it took about
two minutes to send about 100 24-byte packets and about
10 minutes using RTL. To test the signaling in the scheduler
system, an RTL system simulation of two fabric scheduler
cards, two line card controller cards, and one line card for
15 fabric ticks (about 3 million simulation steps) took about
ten hours on a 2 GHz P4 with 2 GB of RAM running Linux.

System-level simulation also exposed protocol problems
between our chips and third party devices due to incorrect
configurations and misundertanding the data sheets.

Many of our FPGAs had insertion and capture buffers at
the interfaces that were software accessible. Interface testing
at the system level was often done by utilizing these buffers
in some form of system-level model. These tests were a key
part of the testing when the hardware arrived and could be
used to automatically generate scripts to test the hardware.
This is discussed in Section 7.

6.3 Co-simulation
To be able to get the software group into the early testing

loop a simple co-simulation interface was developed. Instead
of using commercial tools, we created a simple link between
the processor platform used for the software development
and the Synopsys VERA testbench environment. This link
took advantage of the structure of the software and was im-
plemented using sockets to open TCP/IP network connec-
tions. The software drivers had a layer where it was possible
to extract the lowest level reads and writes to memory with-
out affecting the application code. Only some code below
the programmer visible interface was touched.

The reads and writes were converted to accesses to a
socket that was created over the network between the pro-
cessor platform being used to test the software and the sys-
tem running the chip simulation. At the simulation end, the
accesses received on the socket were converted to look like
accesses from the on-board processor from the perspective
of the simulation.

Although this methodology does not exactly model the
interface it was quite adequate for testing the software. The
only part not tested would be the actual physical interface
between the processor bus and the access to the chip.

Co-simulation was mostly used to test that the drivers ac-
cessed the registers properly with the proper memory map.
In some cases, diagnostic features on a chip would be exer-
cised using the software to test some higher-level features.

With the ability to do system-level simulations with mul-
tiple boards it was conceivable that large portions of the
entire system could have been simulated and run with the
actual software though this was never attempted.

7. VALIDATION SCRIPT GENERATION
After the first smoke tests to determine if new boards

would power up correctly, the first task was to get the on-
board processor up and running. The processor would run a
board-support package (BSP) that included a monitor that
allowed basic memory accesses and other functions. Vali-

dation scripts written in PERL could be run to carry out
functions like inserting a packet at a transmitter interface,
capturing it at a receiver interface, and checking the result
against an expected value generated during simulation. The
scripts used a handle to a telnet object that would telnet to
the board and execute monitor commands.

Most of the tests done on the system-level simulations
were done using only the microprocessor interfaces to the
chips, so many of these tests could also be done on the
actual hardware. As a result it was possible to generate
a large number of scripts automatically while running test
cases on a system-level simulation. This was done by run-
ning a test case and capturing the memory transactions on
the processor that accessed the various chips. This mem-
ory transaction log was converted to a script that could be
used to validate the actual hardware. The only caveat was
that in the real world the interactions obviously happened
at different time scales so that some timing-related activities
had to be accounted for in the scripts. To handle real-time
delays, a delay statement was inserted in the simulation test
case that had no effect on the test case, but added a delay in
the script. The other case to handle was the polling of sta-
tus bits. A dummy polling statement was placed in the test
script after the simulation polling loop. It would generate a
polling loop in the validation script. Events asynchronous to
register accesses could not be validated with these scripts,
such as the use of hardware packet generators, since they
would run at much different rates than in the simulation.

This process could be extended to system integration when
a new card was added to the system. For example, a system-
level simulation could be run for the multiple cards in the
system. Packets could be injected on one card and then
captured and observed on another card. Scripts to do this
on the hardware would be automatically generated, signif-
icantly simplifying the task of generating the scripts and
debugging them. If the test case on the simulation worked,
then the actual test on the real hardware using the auto-
matically generated script had a high likelihood of working,
or at least when problems were observed, it was unlikely to
be a problem in the script.

Automatic script generation for hardware validation and
system integration was extremely useful and showed the
merits of having a fully integrated tool flow.

8. RESULTS
The true measure of success can only be demonstrated by

the first-time success of a complex PCB. There were two
large boards that give the necessary proof.

The first board was the datapath card for a linecard. It
was the first board to go through our complete flow from the
beginning as well as the first to use the Cadence PCB tool
flow. It contained nine 1152-pin Xilinx Virtex-II FPGAs
on a 28-layer PCB with 5400 components, 7082 nets, 41317
pins, 30740 connections, 25180 inches (0.64 km) of etched
copper, and 200 constraint/topology classes. The design
took six months from drawing board to gerbers and had one
barnacle due to a problem not detected by our tools. One
of the clocks had an incorrect pullup and the requisite check
was quickly added to the flow.

The second board was the scheduler card for the switch-
ing fabric. It had 11 Xilinx Virtex-II FPGAs, most of which
were in 1152-pin packages. The PCB had 32 layers, 5500
components, 7433 nets, 37411 pins, 25800 connections, 26930
inches (0.68km) of etched copper, and had the characteristic
of high routing density and just being a very large design.
The design nine months from drawing board to gerbers, in-
cluding four months of routing. The only barnacles were
due to a specification sheet that had incorrect information
on it. No barnacles were due to the design being improperly

captured.
To add even stronger evidence to the success of the sched-

uler card using our flow, the expectation was that it would
take several weeks to get the card up and running and longer
to get it integrated into the system. Instead, it took less
than a week before the card was installed into a system and
running all of our validation scripts.

8.1 Cultural Observations
It is interesting to add a note about design cultures that

was observed. There is no claim here that this is true ev-
erywhere, but it is worthy to mention that a difference in
cultures can make a large effort like this more than a tech-
nical challenge.

The board designers tended to be more visual and reluc-
tant to accept the flow at the beginning. For example, there
were problems getting the board designers to accept the
naming convention that was developed. They still preferred
to view the schematics rather than using the reports gener-
ated by CAD. The FPGA designers were much more script-
ing and automation driven and they were the main drivers
for the development of the overall environment. However,
the success of the flow on a number of early cards got ev-
eryone on board, and the success of the most complex cards
was the final convincing evidence.

9. CONCLUSIONS
The attempt to connect all of the design flows can be

deemed to be highly successful based on the results from
the implementation of two complex boards. To be first-time
successful when implementing a PCB, extensive checking,
double-checking, and simulation is required between all of
the individual design flows within the system. In our system,
a consistent naming convention and a multitude of scripts
and custom tools were required to pull all the flows together,
but the results were well worth the time invested.

With further effort, other interesting extensions could be
considered. If the pin-list spreadsheets were extended to in-
clude all of the connectivity for each device, then most of the
schematics could likely have been generated automatically.
In the FPGA verification environment, much of the testing
is similar to the tests that the software drivers would per-
form. Assuming that the drivers were written in C++ and if
a C++ verification language was used, like TestBuilder [7],
then methods for testing each device could be directly im-
ported into the device drivers.

10. ACKNOWLEDGMENTS
D and W also made significant contributions to this en-

vironment. P and M provided the board data. Finally,
we want to recognize the efforts of the entire amazing XYZ
team. . .

11. REFERENCES
[1] www.synopsys.com.

[2] www.synplicity.com.

[3] www.xilinx.com.

[4] www.platform.com.

[5] www.microsoft.com.

[6] www.cadence.com.

[7] www.testbuilder.net.

